On 2×2 Systems of Conservation Laws with Fluxes That Are Entropies

نویسنده

  • MICHAEL JUNK
چکیده

In this article, we study systems of conservation laws with two dependent and two independent variables which have the property that the fluxes are entropies. Several characterizations of such flux functions are presented. It turns out, that the corresponding systems automatically possess a large class of additional entropies, they are closely related to a kinetic equation, and, in the case of strict hyperbolicity, they can be decoupled into two independent Burgers’ equations. The isentropic Euler equations with zero or cubic pressure laws are the most prominent examples of such systems, but other examples are also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

E.Yu. Panov Prolonged systems for a scalar conservation law and entropies of higher orders

We give a matrix representation for prolonged systems corresponding to scalar conservation laws and describe entropies of such systems. Let f ∈ C(R). We denote Dnf = Df(x) ∈ R n the column (f, f , . . . , f ) consisting of derivatives of f , and consider the n × nmatrix Tn(f) = Tn(f)(x), which is defined by the equality Dn(fg) = Tn(f)Dng ∀g ∈ C (R). (1) The coefficients of Tn(f) are continuous ...

متن کامل

Conservation laws for nonlinear telegraph equations

A complete conservation law classification is given for nonlinear telegraph (NLT) systems with respect to multipliers that are functions of independent and dependent variables. It turns out that a very large class of NLT systems admits four nontrivial local conservation laws. The results of this work are summarized in tables which display all multipliers, fluxes and densities for the correspond...

متن کامل

Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws

In this paper, we investigate the accuracy-enhancement for the discontinuous Galerkin (DG) method for solving one-dimensional nonlinear symmetric systems of hyperbolic conservation laws. For nonlinear equations, the divided difference estimate is an important tool that allows for superconvergence of the post-processed solutions in the local L2 norm. Therefore, we first prove that the L2 norm of...

متن کامل

Self-similar solutions‎ ‎of the Riemann problem for two-dimensional systems of conservation‎ ‎laws

In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003